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Canonical orthonormal basis for SU(3) 3 SO(3): 111. Complete 
set of SU(3) tensor operators 

R Le Blanc and D J Rowe 
Department of Physics, University of Toronto, Toronto, Ontario, Canada M5S 1A7 

Received 12 February 1985, in final form 19 July 1985 

Abstract. A complete set of tensor operators for SU(3) is given in a model space generated 
by two Bargmann vectors. Use is made of modified operator patterns to classify these 
tensors. Their tensorial properties are then discussed in the context of the SU(3) tensor 
algebra developed by Biedenham and collaborators. We also give analytical (semi- 
analytical) expressions for important classes of Wigner coefficients in a Gel’fand (rotational) 
basis. 

1. Introduction 

The representation theory of the SU(3) group has been the subject of numerous 
publications for more than two decades and still continues to attract attention. As a 
symmetry group in high energy physics and as an approximate symmetry for the nuclear 
problem, SU(3) belongs to the basic vocabulary of many physicists. Also, from the 
point of view of representation theory, SU(3) is of prime interest because it is the 
lowest-dimensional unitary group for which the multiplicity problem arises. It exhibits 
both an outer multiplicity in the decomposition of the Kronecker product of two 
unirreps and an inner multiplicity in the classification of states by the group chain 
SU(3) 3 SO(3). 

Significant developments clarifying the tensor structure of SU(3) have been given 
in some recent publications. The outer and inner problems have been shown by Deenen 
and Quesne (1983, see also Quesne 1984a,b) to reduce to a single problem, the outer 
one. The latter has theoretically been resolved by Biedenharn and collaborators (see, 
e.g., Louck 1970) with the use of operator patterns. We will give herein a functional 
and therefore concrete meaning to this resolution which will be useful in the derivation 
of SU(3) Wigner and Racah coefficients. 

Hassan (1983), using the theory of Weyl invariants, succeeded in deriving an 
expression for the multiplicity-free coupling coefficients of the direct product [ A  ]O] 0 
[ h 2 p 2 ]  of two unitary irreducible representations of SU(3) that does not involve any 
summation, in contrast to previous expressions that involve up to five summations. 
However, his expression is quite complicated. We derive here a very simple compact 
expression for these coefficients using the tensorial approach of Biedenharn and 
collaborators. 

O’Reilly (1982) determined a closed formula for the decomposition of the direct 
product [ A l p l ]  0 [ A z p 2 ]  of two unitary irreducible representations of SU(3) and also 
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1094 R Le Blanc and D J Rowe 

determined conditions of existence of [A3p3]  in the decomposition of the product and 
its multiplicity. 

The tensor structure of SU(2) was studied by Schwinger (1965) in a Hilbert space 
generated by two bosons (a:, a t ) .  It has been shown independently by Biedenharn 
and Flath (1984) and Bracken and MacGibbon (1984) that a parallel construction can 
be given for SU(3) in terms of a single irreducible representation of the non-compact 
group S 0 ( 6 , 2 ) .  To this end, both Biedenharn and Flath (1984) and Bracken and 
MacGibbon (1984) use a minimal set of two fundamental Bargmann vectors (equivalent 
to two vector bosons) q1 and q2 spanning respectively the fundamental SU(3) unirreps 
{ 10) and { 11) to generate their Hilbert space (see also Chac6n er a1 1984). Biedenharn 
and Flath then proceeded to give the structure of the SU(3) tensor algebra and a 
classification of all SU(3) tensor operators by decomposing under SU( 3) all tensors 
arising in the enveloping algebra of S0(6,2) .  They thereby constructed a generally 
non-orthogonal but complete set of SU(3) Wigner shift tensors in terms of the funda- 
mental Wigner tensors. It remained, however, to relate the Biedenharn-Flath basis to 
the elegant classification by operator patterns. The latter step is important for the 
calculation of SU(3) Wigner and Racah coefficients. 

An alternative and elegant realisation of the S0(6,2)  model is given elsewhere (Le 
Blanc and Rowe 1985d, 1986) in the context of a search for a group structure that 
would generate a space of lowest weight states for the nuclear symplectic model 
Sp(3,S)  (Rosensteel and Rowe 1977) as these states are known to carry irreducible 
representations of the SU(3) group (Rosensteel and Rowe 1980). 

Underlying some of these recent results is a very powerful concept in the representa- 
tion theory of Lie groups, namely the concept of complementarity of two groups 
embedded in a larger group. To be more precise, use is made of specific unirreps of 
the larger group, for which the multiplicity problem does not arise, to decompose the 
Hilbert space with respect to the complementary subgroups. A unique and satisfactory 
labelling scheme is thereby introduced. Such complementarities have been successfully 
used, for example, by Biedenharn er a1 (1967) for %( n ) O U (  n )  c U( n’), Moshinsky 
and Quesne (1970,1971) for O(n)OSp(d,  %)c Sp(dn, 8) and Dragt (1965) for O(2)O 
SU(3) c O(6) to classify boson polynomials according to the relevant groups. 

More recently, using an idea proposed by Deenen and Quesne (1983, see also 
Quesne 1984a, b), Le Blanc and Rowe (1985a, part I of this series) used the complemen- 
tarity of O(3) and Sp(2,%) in Sp(6,%) to give canonical orthonormal bases for generic 
representations {h,h,} of SU(3) in the group chain SU(3) 2 SO(3). They then proceeded 
to calculate the reduced matrix elements of the su(3) 2 so(3) algebra in these bases 
(Le Blanc and Rowe 1985b, part I1 of this series). A natural extension of this is 
therefore to give the Wigner and Racah coefficients for SU(3) in the group chain 
SU(3) 2 SO(3) or, equivalently, to resolve the tensor structure for SU(3). 

The purpose of this paper is to indicate how, by extending the complementarity 
principle to Bargmann tensors as opposed to Bargmann polynomials, one can explicitly 
construct a complete set of SU(3) tensors and classify them using modified operator 
patterns. The Hilbert space for our construction is the space of polynomials in two 
Bargmann vectors g, and g, (equivalent to two vector bosons). However, in contrast 
to the Biedenharn-Flath and Bracken-McGibbon constructions, our vectors both carry 
fundamental {lo} SU(3) unirreps. We show that a set of tensors is naturally defined 
on this Hilbert space and the tensors are naturally classified by their transformation 
properties under the complementary groups %(2) and SU(3). It will then be shown 
that the % ( 2 )  labels, which distinguish tensors ofthe same SU(3) rank, can be identified 
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with (modified) operator patterns, thereby giving, for the first time as far as we are 
aware, an explicit and concrete realisation of the SU(3) tensors introduced and classified 
by Biedenharn and co-workers. 

We then give some highly illustrative examples of how our results might be used 
to compute analytically (or semi-analytically) Wigner coefficients in a Gel’fand (or 
rotational) basis for SU(3). Their computation is a straightforward application of the 
Wigner-Eckart theorem, an approach which has long been vindicated by Biedenharn 
and collaborators. 

Finally we shall discuss the interpretation of the set of operators constructed in 
this paper as a complete and canonical set of operators for SU(3) in a direct generalisa- 
tion of the Schwinger model for SU(2). 

2. A model space for SU(3) 

In terms of the two Bargmann vectors g,,, a = 1,2,  i = 1,2,3,  used in I and I1 of this 
series, we have a u(3) Lie algebra given (with summation over repeated indices) by 

C,  = g,,a/ag,, (2.1) 

%zp = gm,a/agp,. (2.2) 

and the Lie algebra of the complementary group % ( 2 )  given by 

According to these definitions, the boson vacuum (g10) = 1 is seen to carry simul- 
taneously a unirrep (000) of U(3) and a unirrep (00) to %(2). By complementarity, 
the polynomials in g,, can be decomposed into subsets which carry unirreps ( h 1 h 2 ) 0  
{h1h20)  of the direct product group % ( 2 ) 0 U ( 3 ) .  Since the complementarity theorem 
states that these unirreps are multiplicity free, it follows that a basis o f  Bargmann 
polynomials is labelled by the SU(3) labels { h1h2) and a set of Du(2)0SU(3) basis labels. 

The simplest, although not necessarily most convenient, basis is given by the 
Gel’fand bases for both U(3) and Ou(2). These are defined by the unirrep labels for 
the subgroup chains 

U(3) = U(2) = U(1) 
{ 11113 11123m33) { m1 

and 

(2.3) 

(2.4) 

with the usual betweenness conditions m,J 3 mi, , - ,  3 m,+l ,J  and y 1 2 3  y I 1  3 y22.  
Evidently, for the Bargmann polynomials, one has 

m13 = 7 1 2  = h l ,  m23 = y22 = h29 m33 = 0. (2.5) 
The physically relevant basis for the su(3) 1 so(3) Lie algebra is given (see I and 

L, = -.j%~a/ag,i!,, (2.6a) 

11) by 

(2.66) 
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where, here and in the following, [ 
the corresponding subgroup chain 

denotes a tensorial coupling. The bases reducing 

SU(3) 2 SO(3) 2 SO(2) 
{h,h2)  l L M y  (2.7) 

with I =  ( p )  (Le Blanc and Rowe 1985a) or 5 = K (Elliott 1958) a multiplicity index, 
will be denoted I{h,h2)lLM). The SU(3) .1 SO(3) reduction for the Bargmann space 
in six variables was given in I (see also Quesne 1984b). 

It will be appropriate in the following to simply use a single index 7 to label the 
chosen SU(3) basis and an index v to label the Q(2) basis. We then have a %(2)0U(3)  
basis of states for the Bargmann space in six variables denoted by 

(gl{h, h2) v). (2.8) 

Highest and lowest weight states are defined for U(3) and Q(2) in the usual way. 
For example, for U(3) we have 

Cijl{hlh2)~~1w) = 0, i<j, 

Cijl{hlh2)V77hw) = 0, i>j. 

In terms of the Bargmann variables, such states are given, for example, by 

(2.10) 

where 

N ( h , ,  h2) = [ ( h ,  -h,+ l ) / ( h , +  l)!h*!]? (2.11) 

Note that these states are both Q(2) highest weight states as the subspace of Q(2) 
highest weight states is spanned by the vectors 

Within this subspace, every SU(3) unirrep { h l h 2 }  occurs once and once only. It is 
therefore, by definition, an SU(3) model space (Bracken and MacGibbon 1984). We 
now seek a complete set of SU(3) tensor operators that act within this model space. 

3. Tensor operators for SU(3) 

It has been proved by Biedenham, Louck and collaborators (see e.g. Louck 1970) that 
a complete set of SU(3) unit tensor operators can be classified by an upper Gel’fand 
pattem (commonly referred to as an operator pattern). The components of these unit 
tensors are denoted 

(3.1~1) 
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where 

I v \ = /  Y l 2  y l l  Y22 \ 
is an operator pattern and 

\m/ mll m221 

(3.16) 

( 3 . 1 ~ )  

labels a basis for the SU(3) unirrep { h }  = {h1h2} according to which this tensor operator 
transforms. The components of these SU(3) tensor operators are given here in the 
Gel’fand scheme. However, they may be chosen in any arbitrary way. In particular, 
it may be convenient in some physical applications to choose a basis which reduces 
the subgroup chain (2.7). It is again appropriate therefore to use the single index rj 
to label the components of an SU(3) tensor, where 7 indexes any convenient SU(3) 
basis. For notational ease, we then denote the components of a general SU(3) unit 
tensor by 

y ( y ) { h )  P 7 9  (3.2) 
where ( 7 )  = ( ~ ~ ~ 7 ~ ~ )  and p = Y , ~ ,  rather than by the more cumbersome notation of 
(3 .1) .  We shall also shortly redefine ( y )  and p in a more convenient way (cf (3 .11) ) .  

The labels { h }  and 7 define the transformation properties of Y as an SU(3) tensor 
according to Racah’s definition of a tensor operator 

where ({h}r]”)C,.J{h}~) are matrix elements of the generators of SU(3) between states 
belonging to a unirrep { h }  (see e.g. Hecht 1965, Le Blanc and Rowe 1985b). The 
operator pattern (or, equivalently, the tensor labels y and p used here) characterises 
the remaining tensorial properties of 9- of which we mention the most important. 

The shifts 

Y11 

A =  A* = Y 1 2 + Y 2 2 - Y 1 1  (:I ( h 1 + h 2 -  Y l z -  y2) 

(3.4) 

indicate that, when applied to a state belonging to a U(3) unirrep {hlhSO}, the tensor 
Y will map this state to a new unirrep labelled by 

{ h”} = { h’+ A} = { h: + AI, hi+ A2, A3}. (3.5) 
Thus it maps an SU(3) unirrep { h i h i }  into { h : + A , - A , ,  h;+A,-A,}.  

Note that the existence of distinct tensors having the same shifts but different 
operator patterns reflects the existence of the outer multiplicity problem for SU(3). 
The more technical properties of these operator patterns are thoroughly discussed by 
Biedenharn and collaborators (see Biedenharn et a1 1972, Biedenharn and Louck 1972, 
Louck and Biedenharn 1973 and references therein) to which we refer the reader. 

We show in this paper how to construct a complete set of SU(3) tensor operators 
by restricting a set of %(2)0SU(3)  tensor operators defined on the full Bargmann 
space to the SU(3) model space of %(2) highest weight states. In attempting to give 
an explicit construction of the SU(3) tensor operators corresponding to the above 
operator patterns, it will be useful to modify the latter in a minor but nevertheless very 
significant way. 
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First observe that the permissible Biedenharn-Louck operator patterns are the 
possible unirrep labels for the abstract subgroup chain 

with the canonical embedding of U ( 2 ) = U ( l )  in U(3). In this embedding, the U(2) 
subalgebra is spanned by the subset of U(3) generators 

G I ,  c 2 2 ,  c 1 2 ,  C 2 l .  (3.7) 

Thus the permissible U(2) labels (y12y22) are given by the usual U(3) 3. U(2) reductions 
(betweenness conditions) 

{100) & ( l o )  + (00) 
{ 200) 3. (20) + ( 10) + (00) 

I l l 01  3. (11)+(10) 

(210) 3.(21)+ (20)+(11)+(10) 

(310) 3. (3 1) + (30) + (21) + (20) + ( I  1) -t (10) 

(3.8) 

Since we are seeking tensor operators for SU(3) rather than U(3), we find it more 
appropriate to use modified operator patterns in which the permissible patterns are 
the possible unirrep labels for the subgroup chain 

(3.9) 

The difference is that this U(2) subalgebra is spanned by the subset of SU(3) generators 
C,,-C33, c 2 2 - c 3 3 ,  c 1 2 ,  c21. (3.10) 

Since the basis states in either scheme are in fact identical, the two sets of operator 
patterns are trivially related. Indeed, for a U(3) U(2) =U(1) Gel’fand state I{h1h20) 
( Y ~ z Y ~ ~ ) Y ~ ~ ) ,  we have 

C 3 , l ( h , h 2 0 ) ( Y 1 2 Y 2 2 ) Y i i )  = ( h , + h 2 -  Y l 2 -  Y22)l(hlh20}(Y,2Y22)Yll) 

= ~ 3 l ~ ~ l ~ 2 O ~ ( Y l 2 Y 2 , ) Y l l ~  

and hence the SU(3) labels defined in (3.9) are given by 

Yl  = 7 1 2  - A39 Y2 = Y22 - A39 v = 71 1 - A 3 .  (3.11) 

Thus we reinterpret the labels ( y )  and p of the set of tensors (3.2) by ( y )  = ( y1 y2) and 
v = yll  - A 3 .  The permissible U(2) labels (yIy2)  are now given by the SU(3) 3. U(2) 
reductions 

(1O)J ( lo)+(-1-1)  

(20) 3. (20) + (0- 1) + (-2-2) 

{11)3. (11)+(0-1)  

(21) 3. (21) + (1 - 1) + (00) + (- 1 - 2) 

(31) J. (31)+ (2-  l ) + (  10) + (0 -2 )+  (-1 - 1 ) +  (-2-3) 

(3.12) 
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and the SU(3) shifts are given directly by 

(3.13) 

By modifying the labelling of SU(3) tensors in this way, we shall show in 0 4 that it 
becomes possible to identify the set of SU(3) tensors (3.2) with a set of %(2)0SU(3)  
tensors acting on our Bargmann space in six variables. It should be noted that the 
Bargmann space contains only U(3) representations { h l h 2 h 3 }  with h3 = 0. Thus we 
necessarily have the restriction ah3 = 0 and so the shift a3 is redundant. 

4. Construction of tensor operators for SU(3) 

We first consider the construction of a set of %(2)0SU(3)  tensors which act on the 
Bargmann space in six variables. We subsequently restrict their actions to the SU(3) 
model space and relate them to the complete set of SU(3) unit tensors of § 3. 

First, observe that the Bargmann polynomials 

( g  I { h , h 2 }  U V )  a T (  h l y h 2 ) { h $ 2 ) (  g ) (4.1) 

can be regarded either as coherent state wavefunctions in a Bargmann space or as 
multiplicative tensor operators. The polynomials in the differential operators (a/agai) 
are the components of differential tensor operators. By complementarity, one finds 
that the latter can be decomposed into subsets which carry unirreps 

( - k 2 ,  - k i ) O { O ,  -k2, - k , )  

of % (2) 0 U( 3) and hence unirreps 

(-k21 - k , ) O { k , ,  k , -  k2) 
of %(2)0SU(3) .  Thus we obtain the following basic %(2)0SU(3)  tensors with SU(3) 
lowest weight components given by 

and 

(4.2a) 

(4.26) 

Let us now consider the matrix elements of these %(2)0SU(3)  tensors in the SU(3) 
model space. Recall that this is the subspace of the Bargmann space spanned by the 
states l { h , h 2 } v  = h l ~ ) .  From the Kronecker product rule 

{lo)@ {h ih2}  = {hi  + 1, h2} +{hi ,  h2 + 1) +{hi  - 1, h2- I}, 

it follows that the matrix elements 

({h:hS)h;V'l T'k'{b0)l{hlh,lh,V) 

vanish unless 

{ h ; ,  h i }  = { h ,  + 1, h2} ,  {h, ,  h,+ 1) or { h ,  - 1, h2 - l}. 
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But, from the additive properties of the Q(1)  c Q(2) label, they also vanish unless 

hi = h ,  + v. 
Thus we obtain the selection rules 

({ h ; h;}h ; 7'1 T('p'{:)l{ h ,  h z } h ,  7) = 0 

(4.3 1 
({ h hi}  h 7'1 T(-l;')':'l{ h ,  h2}  h ,  7) = 0 
It follows that these tensors have precisely the shifts (3.13) required of them. One also 
ascertains that the other three basic operators of (4.2) likewise have the prescribed 
shift properties. The explicit values of the non-vanishing matrix elements will be given 
in 0 5 .  We thus confirm that the above Q ( 2 ) 0 S U ( 3 )  tensors defined by (4.2) are a 
complete set of {lo} and  { 11) SU(3) tensors, when restricted to the model space, with 
operator patterns given by their Q(2) 3 Q(1) labels. 

From the basic tensors (4.2), we can now construct a representative %(2)0SU(3)  
tensor T ( y ) { h ) ,  for any Q(2)  unirrep ( y )  contained in the SU(3) unirrep { h }  according 
to the branching rule (3.12), in several ways. For example, we could define the tensor 
T ( y ) t h )  of lowest weight with respect to the group product by 

if{h!h;}#{hl+l,  hz},  

if { h I h i }  # { h h2 + 11, ({ h h;} h i 7 'I T ' l ~ " ~ ' l {  h,  h,} h 7) = 0 
if{hlh;}#{h,-l ,  hz-l}. 

~ ( v , v , ) i h , h , )  = [( T(lO) t IO))a(  T (11) t l I )  b ( - 1 - I ) t l O )  (0-1) t l l )  d 
Iw Iw Iw Iw Iw Iw 1 ( T  Iw Iw ) ' (T Iw Iw 1 I, , (4.4a) 

a = ' h  -'A 
3 1 3 2 + ; Y l - f Y 2 ,  

with 
h ,  = a + b + c + d, 

(4.4b) 

d=- 'h  +'h $1 - 2  
~ 2 =  b - c - d, 3 1 3 2 3 7 1  3 7 2 .  

However, we could equally choose tensors with the basic components ordered 
differently. One sees from (4.2) that only two components are not commuting and that 

(4.5) f00){21) (g), T(ll){ll)(g)lv = C,(g) = [sJ/agl 0 
[ T(-l-l)tlo) 

R '  

It is possible therefore to replace the factors 

)' ( T(  11 I t  11) )  e ( T (  - 1 - I ) {  10) 

where e = min( b, c), in (4.4) with the linear combination 

9 I)' = ( C)'. ([ T(IlH11) Tf-l-l){lo) 
(4.6) 
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We obtain the desirable feature that the components of the tensor T(00){21)(g) are the 
elements of the su(3) algebra. As another example, the self-conjugate SU(3) tensors 
of rank {2k, k} have a maximal multiplicity set with shift labels A = (kkk); therefore 
6 = (00) for which the multiplicity is k+ 1 (Lohe et a1 1977). According to the above 
results and as will be seen shortly, these tensors can be obtained by raising in %(2) 
from the following set of %(2)0SU(3)  lowest weight tensors: 

i=O,k (4.9) ( l O ) ( l O i  k i 0-1){11) k i (T lw Iw 1 - (c,w)i(T(lw Iw 1 - 1  

We can easily derive the following selection rules for a general tensor T(y ) ‘h ) .  
(1) Due to its %(2) tensorial properties, a tensor T‘z)‘:’ will map a state belonging 

Ij’ - j /  c j ”  j’ + j (4.10) 

to an SU(3) unirrep { h ’ }  to a set of SU(3) unirreps { h ” }  such that 

with 

j = f( y 1  - y 2 ) ,  j ’  = L( 2 h’ 1 - h ’ )  2 ,  j ”  = t (  h ;  - h ; ) .  (4.11) 

This mapping is known to be multiplicity free and furthermore satisfies the constraint 

h : + h , “ =  h ; + h h + y l + y 2 .  (4.12) 

(2) The %(2) weight and the SU(3) weights are, as usual, additive. 
When the space of %(2)0SU(3)  polynomials is restricted to only lowest weight 

states with respect to the %(2) algebra, in order to define a model as in Biedenharn 
and Flath (1984) or Bracken and MacGibbon (1984), the above selection rules are 
easily verified to reduce to the ones obtained from the standard operator patterns. 

(3) Under restriction to the model subspace, we have from the additivity of the 
%(2) weight 

hy = hi + v. (4.13) 

(4) We then obtain from (4.12) and (4.13) the selection rules 

h : =  h;+6 , ,  h;  = h ; +  62, (4.14a) 

with 

6, = v, 82 = Yl + Y2 - v, (4.14b) 

precisely in accord with (3.13). 
( 5 )  As before, the SU(3) weights are additive. 
We then conclude that the tensor operators built in this section have both shift 

properties and multiplicities assigned to them by the operator patterns if their action 
is restricted to the model space defined at the end of 0 2. Note the important fact that, 
due to the Y%(3) .1 %(2) multiplicity free reduction, tensors belonging to a given 
multiplicity set carry different %(2) characters. They can be shown (as briefly discussed 
in 0 5 )  to form a complete and independent set of SU(3) tensor operators. 

5. SU(3) 2 SU(2) x U(l) Wigner coefficients for [A01 coupling 

The primary purpose of introducing a complete set of tensor operators for a compact 
group is to enable one to calculate the Wigner and Racah coefficients for this group. 
The operators constructed in 0 4 can be used to this end. For the sake of completeness, 
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one should first ascertain that the tensors (4.7) form an  independent set of tensors. 
Fortunately, the structure of the tensors (4.7) is such that the arguments used by 
Draayer and  Akiyama (1973) concerning the independence and  null space properties 
of their set of abstract tensors can also be applied to our set of Bargmann tensors (cf 
also Le Blanc 1985). We will therefore in the following concentrate on specific but 
highly instructive illustrations of the power of our approach. 

We will, here and in § 6, use Elliott’s SU(3) quantum labels 

and his SU(3) 3 U( 1) x SU(2) basis labels EA. We also occasionally use the usual 
(angular momentum z projection) label 

i = 8 2  v - Y l  - 7 2 )  (5.2) 

for the eigenvalues of the %(2) weight operator ( VI1 - V2J/2 instead of the %( 1) = %(2) 
Gel’fand label v. Finally, we will also use Hecht’s (1965) and Draayer and Akiyama’s 
(1973) notation for the SU(3) Wigner and Racah coefficients. 

We now state a useful partial result. In our Bargmann space, the matrix element 
of one of the tensors of (4.7) can be expanded, for a multiplicity free coupling, as 

( Y  y 2 )  [ A 2 f i 2 1  (1 A 3 ~ 3 1 5 3  E3A3Mi31 T ;> .*‘,2M ,2 I [ A  ICL 1 I l l  €1 AI MAl) 

= (9 151; h l 2 I t A 3 5 3 N A  lPl1‘l‘~l; [ A 2 C L 2 1 ~ 2 ~ 2 I I [ A 3 C L 3 1 ~ ~ ~ 3 )  

X (AIM,,; A~M,,IA~M,,,)([A~~L~III T(Y1Y2)rA2CL21 It [ A  1 CLI I) 

(5.3) 

where y = ( yl - y 2 )  and where the last term is a doubly reduced matrix element under 
the group product oU(2)0SU(3). Now for a tensor GLA’”= T(A+f i sCL) [A+f i3p1  which is 
strictly a polynomial in the Bargmann variables (g), we easily deduce from normalisa- 
tion considerations that its reduced matrix element is given by 

([~3CL3111GrA~fi~111[~I~l l~ = N[AlPll/N[A3/.31 (5.4) 

where N[Ap] = N ( A  + p ,  p )  is given by (2.11). Similarly, the reduced matrix element 
for a tensor D [ A C L I  = ~ - A , - A - f i ) [ A + ~ , f i l  strictly in the derivatives ( d / d g )  is easily deduced 
from (5.4) by Hermiticity considerations. For a multiplicity free coupling, which is 
the only case considered below, we find 
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as expected for a stretched coupling. All other coefficients pertaining to coupling by 
one of the [lo] SU(3) tensors (4.2) can be obtained similarly. Usually, and for ease 
of computation, one will deduce the value of an arbitrary SU(3) Wigner coefficient 

([AIPII'IAl; ~ ~ 2 ~ 1 ~ 2 ~ 2 l l ~ ~ 3 C L 3 1 ~ 3 ' ~ 3 ~  (5.7a) 

from a specific coefficient like 

([ A 1 P 1 1  HW; [ A  201 E A II [ A 3 ~ 3 1  HW) (5.7b) 

by using recursion formulae like the ones derived by Hecht (1965). All the SU(3) 
Wigner coefficients pertaining to coupling by a [lo] tensor have been tabulated by 
Vergados (1968). 

In order to demonstrate the versatility and power of our approach, we now consider 
the (multiplicity free) coupling of states by a tensor carrying a [AZO] SU(3) unirrep 
which, according to (4.7), has an SU(3) highest weight component given by 

(5.8) 

with 0 s  i s  A2,  0 k s  A 2  - i and where 

Wy;{ X }  = x, ~YZw = [ W I Z ,  XI, 
(5.9) 

@ W }  = [%, [(en, Xll, etc. 

The tensor (5.8) has, according to (4.14) and ( 5 . 1 ) ,  the SU(3) shifts 

or, for given 

A 3  = Al+6, - a2 = A I  - A 2 +  i+2k, 

p3 = p + 6, = p1 + A 2  - 2 i - k, 

[Alpl] and [A3p3], is given the following values for i and k: 

i = [;(A, + A 2  - A 3  + 2 p 1  -2p3) ] ,  

k =  [f(2A3 -2A1 + A2+/~3 - pl)]. 

( 5 . 1 0 ~ )  

(5.10 b)  

(5.12) 

Now, it would seem as though ( 5 . 1 1 )  is unsuitable to provide us with a means to 
calculate the SU(3) Wigner (isoscalar) coefficient as there are two unknowns in the 
right-hand side, namely the SU(3) Wigner coefficient and the %(2)0SU(3)  doubly 
reduced matrix element. But we proceed to prove below that the reduced matrix 
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element is, in the Bargmann space, proportional to the isoscalar coefficient. Further- 
more, we derive the constant of proportionality. Thus, there is in fact only one unknown 
in (5.11), the SU(3) isoscalar factor itself. The overlap matrix on the left-hand side 
of (5.11) is easily evaluated with the help of techniques similar to the ones used by 
Moshinsky (1962) for his evaluation of SU(3) boson state normalisation factors. 

We now rewrite the reduced matrix element of (5.11) as 

where U([A , -  101.. . [Alp1 - 11) is an SU(3) Racah coefficient (Hecht 1965). From 
equation (12) of Hecht (1965) and using easily calculated [ 101 coupling coefficients 
(or using table 1 from Vergados (1968)), we find 

where 

Applying (5.13) recursively, we find 

(5.16) 

Since the tensor p A 2 - i o ) [ A 2 - i o 1  is a polynomial strictly in the Bargmann variables, 
the ratio on the right-hand side of (5.16) is easily calculated using (5.3) and (5.4). By 
a straightforward extension of techniques used by Moshinsky (1962), we evaluate an 
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intermediate overlap. We finally find 

X [ f ( A l + A 2 - A 3 + 2 ~ 1 - 2 ~ 3 ) ] ! [ f ( 2 A ,  -A2+A3+/~I-p3)]!}~/~ 

( A ,  + l)[f(2Az-h,+ A3-2/.~1+2p3)]![~(Al + A2-A3+2p1+ ~ 3 + 3 ) ] !  
(p3+ l ) A , ! A 2 ! A , ! ( A I  + P I +  l)!(A3+ ~ 3 +  l)![f(A3-Al-A~+ PI + 2 ~ 3 ) ] !  

(5.17) 

where the right-hand side is the above-mentioned constant of proportionality between 
the doubly reduced matrix element and the SU(3) isoscalar coefficient. 

Instead of calculating the left-hand side of (5.11) directly, it is actually easier to 
calculate initially 

( [ A ~ P ~ I v ~ (  = A~+Pu.J)HWIT d = k ' - i  h& l [ A i ~ i l V 1 (  = A ~ + ~ i ) ~ i ~ l ~ ~ , )  

and then to modify the result using (see Hecht 1965) 

(5.18) ( A  -21 - i ) [ A  01 

( [ ~ l C L I I ~ 1 ~ 1 ;  [A2OlHWll[A3P31HW) 

A2![f(2Al - A 2 +  A 3 +  pl -  p3)]![f(2A, - A 2 +  A 3 S  + 2 ~ 3 + 3 ) ] !  
A l ! ( A l  + P I +  l)![f(2A3+A2-2h1 -p1+p3)]! 

x ([AlPIIHW; [~20IE2~211[~3P31H~J (5.19) 

where LY = [ f ( A l + A 2 - A 3 + ~ 3 - ~ l ) ] .  
We find the following value for the matrix element (5.18): 

(-l)"A3! 
matrix element = 

{[f(2A1 - A z +  A 3 +  PI - ~ ~ j ) I ! [ f ( h l  + A 2 +  2A3+ P3 - P I  +3)I!} 

x {( A 1  + l ) ! [ f ( A l +  A 2  - A 3  + 2 ~ 1  + p3 + 3)]! 

X [ f ( 2 A 2 - A l + A 3 - 2 ~ 1 + 2 ~ 3 ) ] ! } 1 / 2  

( A 3  + 1)(A3+ ~ 3 +  1) ![f(2Ai - A z + ~ ~ + c L I  -c~3)I! 
( ( p 3  + l)[f(A3 - A ,  - A 2  + P I  + ~ c L ~ ) I ! [ ~ ( ~ A I  - A 2 +  A 3 +  PI +21*.3+3)1! 

(5.20) 

Introducing (5.17), (5.19) and (5.20) in (5.11), we finally derive the simple and  
elegant result 

( [ A  1 P I 1  HW; [A201 E2A2 II [A3~31Hw)~ 

= Al!(A3 + 1)!( A I  +pi  + 1)!( A3  + ~3 + 2)! 

x {[f(2A1 - A 2 +  A 3 +  

x [f(2A,- A 2  + A 3  + ~ 1 -  p3)]![f(A,+ A 2 +  2A3 + 2p1 + p3 + 6)]!}-' 

f 2p3 +3)]![f(Al+ A 2 +  2A3 - p1 + p 3  + 3)]! 

(5.21) 

which is in agreement with the expressions given in table 2 of Hecht (1965) for 
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[A20] = [20] and [40]. From this coefficient, all other coefficients pertaining to the 
coupling by the [A,O] tensor can be obtained in closed form using the recursion formulae 
given by Hecht (1965) and Draayer and Akiyama (1973). Hermiticity considerations 
also lead easily to the Wigner coefficients pertaining to the coupling by a [OPJ tensor. 

We have subsequently studied the more complicated case of (generally non-multi- 
plicity free) coupling by a generic [ A p ]  SU(3) tensor and given a concrete resolution 
of the SU(3) multiplicity problem (LeBlanc and Rowe 1985~) .  

6. SU(3) 2 SO(3) Wigner coefficients for I201 coupling: application to the nuclear 
symplectic model 

The nuclear symplectic model Sp(3, %) 2 U(3) has recently been presented (see the 
recent review by Rowe et a1 (1985)) as a union of independent particle and collective 
models which admits both superfluid flows and flows with vorticity. Having full regard 
for nuclear symmetry and the Pauli exclusion principle, the symplectic model is fully 
compatible with the shell model and hence takes full account of the discrete Fermi 
nature of finite nuclei. 

When computing matrix elements of a rotationally invariant symplectic Hamil- 
tonian, one needs SU(3) =, SO(3) Wigner coefficients corresponding to coupling by a 
[20] SU(3) tensor since, when decomposed under SU(3), the symplectic algebra 
contains the [20] symplectic raising operator A[201 and its Hermitian conjugate B[02’ 
in addition to the maximal compact subalgebra U(3). Now, it is of paramount 
importance to optimise the computation of such coefficients to allow sophisticated 
shell model calculations within the symplectic framework. The results from parts I 
and I1 of this series and of 0 5 provide just the right tools for this purpose. 

In terms of the SU(3) 2 SO(3) basis built in parts I and I1 (to which we refer the 
reader for a review of the notation used in this section), the % ( 2 ) 0 S 0 ( 3 )  reduced 
matrix elements of the 1 = 0,2  components of a basic [20] SU(3) tensor are defined by 

Comparison with equation (5.1), rephrased in terms of the SU(3) 2 SO(3) basis, gives 
immediately the desired isoscalar factors as the rafios 

(6.2) 
The %(2)OSU(3) reduced matrix element in the denominator is independent of 

the basis used for SU(3) and can therefore be obtained from (5.17) and (5.21). 
The calculation of the numerator is easily performed using techniques extended 

from part 11. First, note that, since the SU(3) unirrep [ lo]  restricts to the SO(3) unirrep 
[l], the %(2)0SU(3)  tensors T‘loi[Lol and T‘-L-ll[lol are also irreducible oU(2)0S0(3) 
tensors: 

(6.3) 
TClOi[lOI = S ~ l O ) [ l l  ~ ‘ - l - l ’ [ l o l ~  s(-l-l)[ll 

i I m  5 m ,  i I m -  < m .  
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The % ( 2 ) 0 S 0 ( 3 )  reduced matrix elements 

([ A 3 413 I ( ~ 3  L3 ~3 I II S'lo'[ I I [ A I P i I ( PI [ LI E i I) ( 6 . 4 ~ )  

for the canonical S U ( 3 ) 3 S 0 ( 3 )  basis have been calculated in 11. Using similar 
techniques, we have calculated the reduced matrix elements 

( [ A ~ P ~ I ( P ~ ) [ L ~ E ~ I I I  S ' " ' ~ ' l \ l ~ ~ l P I I ~ P l ~ t ~ l ~ l l ~  (6.4b) 

and give the results in the appendix. The reduced matrix element for the 0%(2)@S0(3) 
tensor s'-1-1)[11 is thereafter given by 

I l [ ~ l P I I ( P I ) [ ~ 1 ~ I I )  

2 L l + 1  l J 2  

(-1-1'[11 ([A3P3l(P3)[L3&31 /I s 
= (-1)Li+l-L3 ( - 2L3+ 1) ~ ~ ~ 1 P 1 1 ~ P I ~ E ~ I ~ 1 1 / / ~ ~ 1 1 ' ~ 1 1 1 1 ~ ~ 3 P 3 1 ~ P 3 ~ ~ ~ 3 ~ 3 1 ~ .  

(6.5) 

Now note that each [20] S U ( 3 ) 3 S 0 ( 3 )  tensor can be written (using (5.8) and 
(6.3)) as a %(2)0S0(3 )  coupled product 

T'Y I Y 2 ) [ 2 O 1  I = ([ 101 1 ; [ 101 1 1 )  [ 201 I ) ,  [ s' Y ;  Y ; t [ l l s (  Y ; Y ; H l l ]  { Y ,  Y *  ) [ I1  (6.6) 

where ([loll; [10]111[20]1) is an SU(3) 3 SO(3) isoscalar factor easily derived from 
(6.3) and (6.4) from part I1 and (5.4) of this paper. 

It is then easily verified that the doubly reduced matrix element in the numerator 
of (6.2) is given by 

([A3~31(P3)[L3 ~ 3 1  II F Y I  y2)[2101 II [ A  I P 1 ](PI )[ L, E 1 I)  

enabling us to evaluate the isoscalar factor (6.2). 
Since reduced matrix elements of the fundamental tensors (6.3) can be considered 

as global constants which can be tabulated once and for all, equation (6.2) provides 
us with an easy and straightforward method for the evaluation of the SU(3) 3 SO(3) 
coefficients needed to perform nuclear symplectic calculations. We expect these 
developments to reduce by at least an order of magnitude the time required to build 
numerically any symplectic Hamiltonian matrix. 

7. Discussion 

Double Gel'fand (Bargmann) polynomials have long been known to offer an effective 
and economical way of generating multi-rowed representations for the unitary groups. 
But their applications have been mostly restricted, until very recently, to the construction 
of "U( n)@U(n) basis states in the Weyl canonical chain. It became increasingly evident 
in recent years that they also represent a powerful computational tool for the calculation 
of some restricted sets of SU( n )  Wigner coefficients (Hassan 1983, Hecht and Suzuki 
1983). Furthermore, by invoking the complementarity principle for states belonging 
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to symmetrical representations of the larger groups Sp( nd, a), it was realised that they 
could be used to generate bases for d-rowed representations of U( n )  in the alternative 
SU( n )  2 SO( n )  decomposition (Deenen and Quesne 1983, Quesne 1984a, b), thus 
offering a resolution of the inner multiplicity problem, in addition to providing a 
natural way of generating unirreps for the non-compact groups Sp(d, 8) (Rowe et a1 
1985). 

In this spirit, we have addressed in the present series of papers the problem of 
constructing a canonical SU(3) 2 SO(3) orthonormal basis for the Bargmann space in 
six variables by using the complementarity principle for basis states of O(3) 0 S p ( 2 , a )  
in Sp(6, %) (part I). We also addressed the problem of calculating matrix elements 
of the generators of the SU(3) algebra in this basis (part 11). These successful 
undertakings seem to indicate that there are strong possibilities that double Bargmann 
polynomials could be effectively used to facilitate the calculations of isoscalar factors 
not only for the compact groups but also for the non-compact groups like Sp( n, %), 
SO(n, 2 )  and SO*(2n) (in that respect, see Le Blanc and Rowe (1985d, 1986)). 

It became increasingly evident to the authors throughout the course of this work 
that the complementarity principle should, and in fact does, extend to Bargmann 
tensors in contradistinction to Bargmann polynomials. As it turned out, we have shown 
that the Biedenharn and Louck classification of SU(3) operators by %(2)c  sF%(3) 
operator patterns (when suitably modified) leads to a concrete classification of OU ( 2 )  0 
SU(3) tensors defined on a Bargmann space in six variables and hence offers a group 
theoretical resolution of the SU(3) outer multiplicity problem in terms of the % ( 2 ) 0  
SU(3) complementarity. In fact we have shown that the operator patterns acquire a 
functional meaning related to the existence of the complementary % ( 2 )  group. We 
have also reduced the calculation of Wigner coefficients to the calculation of matrix 
elements of concrete tensor operators in Bargmann spaces. The construction of these 
tensors being based on a rigorous yet simple group theoretical prescription, we may 
safely assert that the tensors built in this paper correspond to a complete and canonical 
set of tensor operators for SU(3). The Schwinger model for SU(2) can easily be recast 
in our formalism (Le Blanc 1985) and we believe that our construction can be considered 
as a direct generalisation of the Schwinger model. The extension of this construction 
to SU( n )  tensors, n 2 4, should also be straightforward in contrast to the S0(6,2)  
model for SU(3) for which no extension seems available. 

Because our tensors are simple %(2)0SU(3)  Bargmann tensors, the calculation of 
the tensor coupling coefficients can be greatly simplified and (LeBlanc and Rowe 
1985c) the algebraic or numerical calculation of all SU(3) Wigner and Racah coefficients 
facilitated. This is important for sophisticated shell model calculations in an SU(3) 
basis, such as proposed in the symplectic shell model (Carvalho et a1 1985), where 
many such coefficients are required. 

Appendix. Doubly reduced matrix elements of the 4(2)0 SO(3) tensor S{”)”] 
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where the boson reduced matrix element (p ’ l l a t l lp )  has been given in I, 

( + I  = L3 - E 3  

and 

F([Ll] ,  [L+1,0])=[2(L+2)]’’2,  

while 
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